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Abstract

The M-theory field strength and its dual, given by the integral lift of the left-hand side of the equation of motion, both satisfy
certain cohomological properties. We study the combined fields and observe that the multiplicative structure on the product of the
corresponding degree four and degree eight cohomology fits into that given by Spin K-theory. This explains some earlier results and
leads naturally to the use of Spin characteristic classes. We reinterpret the one-loop term in terms of such classes and we show that
it is a homotopy invariant. We argue that the various anomalies have natural interpretations within Spin K-theory. In the process,
mod 3 reductions play a special role.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The non-gravitational fields in M-theory and string theory play a major role in characterizing the topology and the
global aspects of these theories. Such fields take continuous real or complex values in the classical supergravity limit
and get quantized, so that a priori they take values in Z, in the quantum regime. The fields take values in cohomology
of the space X , and so classically are in H∗(X, R) and quantum-mechanically in H∗(X, Z). An important difference
between the two cases is the presence of torsion in the latter case and that does not exist in the former. It is in fact this
feature that gives the subtle distinction between (generalized) cohomology theories.

Both G4 and its ‘dual’ – let us call it G8 for now – involve shifts in the Pontrjagin classes. The M-theory degree
four field G4 defined on an eleven-dimensional space Y 11 is not an integral class but satisfies the shifted integrality
condition [1] G4 − p1/4 ∈ H4(Y 11, Z), where p1 is the first Pontrjagin class of the tangent bundle T Y 11. This is
written as [1]

G4 − λ/2 ∈ H4(Y 11, Z), (1.1)

where λ is equal to half the Pontrjagin class of the eleven-dimensional space Y 11. Compared to ten-dimensional string
theory, described by K-theory, at the level of partition functions, torsion fields play a major role [2]. In particular they
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lead to an anomaly for the partition function. This is canceled in [3] by declaring spacetime to be oriented with respect
to generalized cohomology theories beyond K-theory.

In addition to this field that appears in the eleven-dimensional supergravity multiplet, there is also the dual field
whose class is considered in [4–7] and has a quantization condition of its own. This is the class given by the integral
lift of the right-hand side of the equation of motion for G4 [4]. G8 is built out of a quadratic term in G4 plus the
one-loop term, which is a polynomial expression in the Pontrjagin classes p1 and p2. In [6,7], a distinction is made
between two fields that can be dual to G4: the actual Hodge dual ∗G4 and the class Θ defined in [4].

In this note, we investigate the multiplicative structure on the product of the cohomology of degrees four and eight.
In particular we will show that the quadratic refinement defined in [4] is encoded in the multiplicative structure in
the K-theory for Spin bundles. This will motivate us to propose that the Spin characteristic classes are the natural
setting for the above shifts. This gives an insight into the relation between G4 and its ‘dual’. We then make connection
to the classes proposed in [5]. The calculation of the path integral involves exponentiating the action time 2π i . The
requirement that the partition function is well-defined imposes integrality properties on the topological terms of the
action. One such term is the one-loop term (Eq. (2.4)), whose integrality was established in [1] using congruence from
index theory. This term takes an interesting form when written in terms of the Spin characteristic classes. In fact, it
turns out to be essentially given by the second Spin class, up to an interesting factor of 24 which reminds us of other
occurrences of such a factor. As a warm up to discussing the mod p reduction of the fields, we show that the one-loop
term is a homotopy invariant. The two facts strongly suggest that this term should have a deep homotopy-theoretic
meaning.

The observation that the quadratic refinement is given by the natural multiplication on the image of the Chern
character motivates us to seek more connections with KSpin. To make such connections we study the mod 3 reductions
of the fields. The anomalies in M-theory and type IIA string theory are encoded as conditions on the natural bundles
and the aim here is to argue for a unified approach. We provide evidence for this from the quadratic structure as well as
from the form of the anomalies themselves. This, however, leaves many interesting and subtle questions open, such as
accounting for the precise denominator factors, most importantly the factors 1

2 and 1
24 . Nevertheless, one observation

is the connection between p = 3 and M-theory and between p = 2 and string theory, which provides more systematic
evidence for observations in our previous work [7]. Another theme is the mod 24 quantization. What we see is that
this approach seems to treat in a unified way the anomalies in the membrane theory, in type IIA string theory, in the
five-brane theory, and in M-theory. In terms of classes, roughly, the M2-brane corresponds to the first Spin class and
the M5-brane [8,9] corresponds to the second Spin class.

Anomalies generally involve Spin bundles and so it is only natural to study them within K-theory of such bundles.
How is Spin K-theory related to more well-known K-theories? Given a topological space X , let K̃ O(X) be the reduced
KO group for X and let

W : K̃ O(X) −→ H1(X; Z2) × H2(X; Z2) (1.2)

be the map W (ξ) = (w1(ξ), w2(ξ)), where wi (ξ) denotes the i th Stiefel–Whitney class of ξ ∈ K̃ O(X). There is a
group structure on H1(X; Z2)×H2(X; Z2) making W a homomorphism, i.e. a map that preserves the group structure.
Starting with a real unoriented bundle ξ , the condition w1(ξ) = 0 turns ξ into an oriented bundle, and the condition
w2(ξ) = 0 further makes ξ a Spin bundle. Obviously then, a real O-bundle becomes a Spin bundle when W = 0, and

so the kernel of W is the reduced group (see Section 7) K̃ Spin(X). Thus W fits into the exact sequence [10]

0 −→ K̃ Spin(X) = ker W −→ K̃ O(X)
W

−→ H1(X; Z2) × H2(X; Z2). (1.3)

We do not consider specific examples since K Spin of many classes of interesting spaces are already tabulated in [10].
We say that x ∈ H∗(X; Z) is an element of order r (r = 2, 3, 4, . . .) if and only if x 6= 0 and r is the least positive

integer such that r x 6= 0 (if it exists). The reduction mod k induces the mapping ρk : H∗(X; Z) → H∗(X; Zk). For
more background on cohomology operations, see e.g. [11].

2. The one-loop term via Spin characteristic classes

Recall that characteristic classes on a space X are obtained by pulling back to the space X the universal classes
from the cohomology ring of the corresponding universal space. For oriented vector bundles, the relevant group is SO
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with classifying space BSO . Rationally, the cohomology ring H∗(BSO; Q) is a polynomial ring over Q generated
by the universal Pontrjagin classes pi ∈ H4i (BSO; Q).

As is the case for any G-bundle, Spin bundles have a classifying space, which is BSpin, and the corresponding
characteristic classes are obtained by pulling back from that space. More precisely, the Spin characteristic classes
can be defined for the stable class of a Spin bundle ξ over a topological space X , in our case an eight-, eleven- or
twelve-dimensional space, by Qi (ξ) = ι∗Qi ∈ H4(X; Z), where ι : X −→ BSpin is the classifying map, in the
stable range, for the bundle ξ . The corresponding Qi are cohomology classes Qi ∈ H4i (BSpin; Z), for i = 1, 2, . . ..

The Spin cohomology ring with coefficients in Z2 is generated by the mod 2 Stiefel–Whitney classes of certain
degrees [12]. What we are interested in is integral coefficients, in which case

H∗(BSpin; Z) = Z[Q1, Q2, . . .] ⊕ γ, (2.1)

with γ a 2-torsion factor, i.e. 2γ = 0 [13]. The two degrees relevant to our discussion are

H4(BSpin; Z) ∼= Z with generator Q1

H8(BSpin; Z) ∼= Z ⊕ Z with generators Q2
1, Q2, (2.2)

where Q1 and Q2 are determined by their relation to the Pontrjagin classes

p1 = 2Q1

p2 = Q2
1 + 2Q2. (2.3)

Obviously, when inverting is possible, the generators are given by Q1 = p1/2 and Q2 =
1
2 p2 −

1
2 (p1/2)2.

We now make the first use of the Spin classes. In particular we use them to write the one-loop polynomial I8 in
a suggestive way, and we then make connection to the classes proposed in [5]. The one-loop polynomial of some
tangent bundle T is given in terms of the Pontrjagin classes [14]

I8 =
p2(T ) − (p1(T )/2)2

48
, (2.4)

where p1/2 is usually denoted λ, and represents the string class. In an earlier work [5] we observed that I8 can be
written in a way that suggests its interpretation as a Chern character1 upon using the class λ – which we called λ1
in [5] – and another class, which we defined as λ2 = p2/2, were used. This led to the expression

I8 =
λ2 −

1
2λ2

1

24
. (2.5)

Now we proceed to write I8 in terms of the Spin classes Q1 and Q2 and compare the result with (2.5). For that we
simply substitute (2.3) to get

I8 =
Q2

24
. (2.6)

First, note that this expression is written entirely in terms of the second Spin characteristic class Q2 as the first one,
Q1, canceled out. The relation to the classes in [5] is now obvious. The class λ1 is exactly Q1, whose values is half the
first Pontrjagin class. The degree eight class λ2 is then equal to Q2 once Q1 vanishes. This has a nice interpretation.
Since we are viewing the classes Qi as obstructions, then it makes sense to be able to talk about the second obstruction
only after the first obstruction is absent. This then gives the desired structure to the observations and proposal in [5,6]
on the Spin part of the polynomials.

3. Topological and homotopy invariance

In this section we investigate whether the classes used in [5] and the one-loop term (2.4) are topological invariant
and/or homotopy invariant. Homotopy invariance means dependence only on the homotopy type of the manifold,

1 We will come back to the character interpretation in Section 7.
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and independence of the differentiable structure. Topological invariance, on the other hand, is the requirement of
independence on the choice of a differentiable structure. In both the cases, the statements depend on the coefficient
ring over which the Pontrjagin classes are taken.

3.1. Homotopy invariance of Pontrjagin classes

The homotopy invariance of the rational Pontrjagin classes pk depends on whether one is considering stable or
unstable bundles. For stable universal vector bundles, pk ∈ H4k(BO, Q) are not homotopy invariant for k ≥ 1,
but for nonstable vector bundles pk ∈ H4k(BO[2k], Q) are homotopy invariant [15]. The situation for the integral
Pontrjagin classes modulo2 q is as follows. For q = 2, pk mod 2 = w2

2k , and since the Pontrjagin classes are homotopy
invariant, this implies that pk mod 2 are homotopy invariant. We deduce from this that the classes pi/2 used in [5] are
homotopy invariant. The integral Pontrjagin classes pk modulo q, where q is an odd prime, are homotopy invariant
only if q = 3. A classic result of Wu that pk mod 3 are the Wu classes U k

3 , which are defined in terms of the Steenrod
reduced powers (see Section 4) implies that they are homotopy invariant. Thus integral pk mod q are not homotopy
invariant for any other q 6= 3 [16].

3.2. Topological invariance of Pontrjagin classes

For a topological manifold M (for us, Z12, Y 11, X10, or M8), let Σ1 and Σ2 be two different smooth structures
and let T MΣ1 and T MΣ2 be the corresponding tangent bundles. Associate the kth Pontrjagin classes pk(T MΣ1) and
pk(T MΣ2) in H4k(M,Λ). The question is whether or not pk(T MΣ1) = pk(T MΣ2). It turns out that the answer
depends on the coefficient ring Λ. For Λ = Q, it is a classic result of Novikov that the rational Pontrjagin classes
are topological invariants. However, this is not the case for the integral case Λ = Z. What about Λ = Zq , the ring
of integers q , where q is any prime? In this case, as mentioned above, pk mod 3 are the Wu classes U k

3 , which are
defined in terms of the Steenrod reduced powers (see Section 4) and hence are topological invariants. This has been
extended to q = 5 in [15]. Thus, for every k ≥ 1, pk mod q are topological invariants for q = 3 and 5. However, this
breaks down at q = 7 as then p2 mod 7 is not topological invariant [17].

Since the integral Pontrjagin classes are not topological invariant, one can ask: what are the multiples of the integral
pk’s that are topological invariant? The smallest possible integer nk such that nk pk is a topological invariant is given
by n1 = 1 and n2 = 7 [18].

3.3. Consequences for the one-loop term

We would like to investigate the invariance of the one-loop term (2.4) in the context of the above discussion. The
one-loop term is an example of a Ponrjagin number, i.e. a polynomial of a given degree in the Pontrjagin classes. It is
known that at the rational level, the only rational linear combination in the Ponrjagin classes that is homotopy invariant
is, up to a rational linear multiple, the Hirzebruch L-polynomial [19] that appears in the signature theorem. However,
the one-loop term is not quite equal to L2 (see (6.2) for the corresponding expression) and thus the polynomial (2.4)
cannot be homotopy invariant at the rational level. Thus we are forced to study the expression modulo primes.

In addition to homotopy invariance of the Pontrjagin classes mod 3, there is an additional result [20] that pk mod
23 are also homotopy invariant. Thus pk mod 24 are homotopy invariant. In particular this means that p2 mod 24
is homotopy invariant. We are still short by a factor of 2 to get the first term in (2.4). Let us look at the analogous
situation for p1. In that case, the fact that p1(ξ) ≡ w2(ξ)2 mod 2 implied the fact that p1 is even when the bundle ξ

is Spin, because then w2(ξ) = 0. Combining the two results one has that the first Pontrjagin class of a Spin bundle
is a homotopy invariant mod 24. Now let us see what can be said about p2. Here note that p2(ξ) ≡ w4(ξ)2 mod 2,
so that we do get the evenness of p2 provided that we have the condition w4(ξ) = 0, the higher degree analog that
replaces the spin condition. Note that this is the obstruction to orientation with respect to the real version E O〈2〉 of
Landweber elliptic cohomology with two generators which appears in the study of the partition functions [3,21,22].
Given this condition, we are then able to define p2/2 as in [5]. Going back to the one-loop term, we have so far that
the first term in (2.4) is homotopy invariant.

2 We use q instead of p to denote a prime, so as not to confuse with the several variations on p used in this note.
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What about the second term in (2.4)? We consider p2
1 . Since pk mod 3 are homotopy invariant then so is pm

k mod 3.
In particular, then, p2

1 mod 3 are homotopy invariant. For Spin bundles p1 is even so then ( 1
2 p1)

2 mod 3 is a homotopy
invariant and so p2

1 mod 12 is a homotopy invariant. On the other hand, from [20], p1 mod 23 is a homotopy invariant.
Combining the two results implies that p2

1 mod 96 is a homotopy invariant. Therefore, the one-loop term is a homotopy
invariant. In fact, as we have just seen, we have more: each of the two terms separately is homotopy invariant.

4. The multiplicative structure on the cohomology ring

In addition to the usual cohomology ring H∗(X; Zq) which is the direct sum of the elements in the individual
degrees depending on grading, one can also form the direct product H∗∗(X; Zq) of the cohomology groups H i (X; Zq)

for i = 0, 1, 2, . . .. In this way, the direct sum H∗(X; Zq) can be thought of as being included inside H∗∗(X; Zq).
The ring structure on both H∗ and H∗∗ is given by the cup-product operation. Inside the ring H∗∗(X; Zq) one can
also talk about inverting elements x , which is possible when the zeroth component is nonzero in H0(X; Zq).

One can form the total Steenrod reduced power operation P = P0
+ P1

+ P2
+· · · which acts as an automorphism

of rings H∗∗(X; Zq) −→ H∗∗(X; Zq), and is the identity on H∗(X; Zq). The cohomology ring H∗∗(X) is graded and
decomposes as H∗∗(X) = H even(X) + Hodd(X) where H even(X) =

∏
∞

m=0 H2m and Hodd(X) =
∏

∞

m=0 H2m+1 are
the cohomology groups in even and odd degrees, respectively. For coefficients Zq , one has the characteristic classes
pi as the mod q reduction of the Pontrjagin classes pi generating the ring H∗∗(BO; Zq) = Zq [[p1, p2, . . .]].

As in the case for the mod 2 classes, i.e. the Stiefel–Whitney classes, one can form the Wu classes, and the
construction is analogous. We now have an orientation so we work with BSO rather than BO . By using the ‘inverse’
P−1 of the operation P , one can define

U (P) = P−1φ−1 Pφ(1) ∈ H∗∗(BSO; Zq), (4.1)

where φ is the extension to H∗∗(BSO; Zq) of the Thom isomorphism φ : H∗(BSO; Zq) −→ H∗(M SO; Zq), and 1
is the unit in H0(X; Zq).

The above is indeed analogous to the more familiar result for the mod 2 Wu class that uses the total Steenrod
operation Sq ,

v(Sq) = Sq−1φ−1Sqφ(1) ∈ H∗∗(BO; Zq). (4.2)

Applying Sq to (4.2) gives the class Sqv(Sq) ∈ H∗∗(BO; Zq) as the direct product of the universal Stiefel–Whitney
classes. Likewise, applying P to (4.1) gives the classes qi = (PU (P))i as the direct product of the universal mod 3
classes. The classic results of Wu imply that the classes qi are oriented homotopy invariants and the Stiefel–Whitney
classes are homotopy invariants.

The Wu classes can be written in terms of multiples of the Hirzebruch L-polynomials [23,24]. For every prime
q certain polynomials (with respect to the cup-product) in the Pontrjagin classes pi reduced mod q are topological
invariants (mod q). For q = 2 of course one has the Stiefel–Whitney classes. Since pi = w2

2i (mod 2) then pi reduced
mod 2 is invariant. For q an odd prime, the Steenrod powers Pr

q lead to certain polynomials U r
q ∈ H2r(q−1)(Mm

; Zq)

in the Ponrjagin classes which are topologically invariant, and which are characterized by the property

Pr
q (v) = U r

q (v) for all v ∈ Hm−2r(q−1)(Mm
; Zq). (4.3)

As mentioned before, these can be written in terms of the Hirzebruch L-polynomials as

U r
q = qr L 1

2 r(q−1)
(p1, p2, . . .) (mod q). (4.4)

Thus (for M8) the first Steenrod power at the prime p = 3 is

U 1
3 = 3L1 mod 3

= 3
p1

3
mod 3

= p1 mod 3. (4.5)
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5. Action of the Steenrod reduced powers

Since the Steenrod reduced power operation Pr
q raises the cohomology degree by 2r(q −1), we see that the highest

prime that keeps us within dimension twelve is q = 5. The possible stable operations in that range are3

(i) q = 2: Sq i for i ≤ 6,
(ii) q = 3: P1, β P1, P2, β P2,

(iii) q = 5: P1, β P1.

We are further interested only in degree four classes, that we would like to either square or cube, and in degree seven
and degree eight classes whose degree we raise only up to a maximum of twelve.

Let us start with the degree four class. Note that the β P i
q are of odd dimension and thus are not useful in this case.

They, however are useful in type II string theory (see [25]) and later for the discussion of G7. Thus, we are left with
only Sq4 and P1

3 , which square a degree four class, and with P2
3 and P1

5 , which cube a degree four class. So we see
just from this dimensional analysis that the first pair makes up the candidates in 8 dimensions, whereas the second
two are the candidates in 12 dimensions. Of course this analysis is only to motivate the discussion and later we will
resort to more precise arguments that come from making the connection to Spin K-theory.

The Adem relation in the mod q Steenrod algebra for the Steenrod powers involving P1
q is

P1
q P2k

−1
q = 2k P2k

q . (5.1)

Then if the dimension of the generator x is 2k+1, the Adem relation on x gives

xn
=

1
2k P1

q P2k
−1

q x (mod q) (5.2)

where xn is the cup-product n-power of x , x ∪ x · · · ∪ x︸ ︷︷ ︸
n

. From this one can easily get a restriction on the degree in

order to have a nonzero cube. For q = 3,

x ∪ x ∪ x = (−1)k P1
3 P2k

−1
3 x (mod 3), (5.3)

and since the dimensions of P2k
−1

3 x is 3.2k+1
− 4, we see that the cube x ∪ x ∪ x is zero (mod 3) unless 3.2k+1

− 4
is a multiple of 2k . This happens only for k = 0 and k = 1,

(i) k = 0: dim x = 2, x2 ∪ x2 ∪ x2 = P1
3 x2 (mod 3)

(ii) k = 1: dim x = 4, x4 ∪ x4 ∪ x4 =
1
2 P1

3 P1
3 x4 (mod 3) = P2

3 x4 (mod 3).

Let us consider the latter case, where x4 ∈ H4(X; Z) is an integral generator. The Adem relation P1 P1
= 2P2 for

a general prime q implies that

P1x4 = ±2x
(q+1)

2
4 (5.4)

in H∗(X; Zp), where x4 is the mod q reduction of the integral generator x4. Therefore, we have

(i) q = 3: P1
3 x4 = ±2x2

4 with x4 = ρ3(x4),
(ii) q = 5: P1

5 x4 = ±2x3
4 with x4 = ρ5(x4), where ρq , again, denotes reduction modulo q.

6. Modulo 3 reductions of the fields

In this section we consider the mod 3 reduction of the fields and we consider the possible actions of the admissible
cohomology operations on them.

3 In this list we omit the subscript q as it is obvious.
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6.1. The degree four field

The first Steenrod reduced power operation for Z3 cohomology is P1
3 , which takes elements in H k(X; Z3) into

elements of H k+4(X; Z3). We consider the mod 3 reduction x4 = ρ3(G4) of the M-theory field G4. We know from
Ref. [1] that G4 extends to the twelve-dimensional bounding theory on Z12, i.e. such that the eleven manifold Y 11 is
∂ Z12. In this case, in addition to the first Steenrod reduced power P1

3 at p = 3 (outlined above and will be discussed
further in Section 6.3), we can also consider the second operation P2

3 , which raises the cohomology degree by eight.
Thus we have

P2
3 x4 ∈ H12(Z12, Z3), (6.1)

which is equal to U 2
3 x4, where now

U 2
3 = 32L2 mod 3

= 32 1
45

(7p2
2 − p2

1) mod 3

=
7p2 − p2

1

5
mod 3. (6.2)

Thus, the action of P2
3 on the mod 3 reduction of G4 is

P2
3 x4 = ρ3

(
7p2 − p2

1

5

)
x4. (6.3)

Since G4 also involves a gravitational shift that involves p1, we also mention the action of power operations on the
first Pontrjagin class. The mod 3 reduction of the Pontrjagin class ρ3(p1(ξ)) is an element in H4(X; Z3), given by the
Wu class U 1

3 (ξ). Thus we can have an action of P1
3 , and the result is

P1
3 ρ3(p1(ξ)) = P1

3 U 1
3 (ξ)

= ρ3

(
2p2(ξ) − p2

1(ξ)
)

. (6.4)

6.2. The degree seven dual field G7

We are interested in the action of cohomology operations (at q = 3) on the fields (reduced modulo 3). Since the
smallest dimension for such an operation is four, this means that we cannot consider the dual degree eight class Θ
(in the notation of [4]) without going beyond eleven dimensions. We can, however, consider the differential form
G7 = ∗11 G4, on which we perform the mod 3 reduction after lifting to an integral class. Let us call the resulting class
x7 ∈ H7(Y 11, Z3). In this case the first Steenrod reduced power P1

3 at q = 3 acts on x7 to give a top class

P1
3 x7 ∈ H11(Y 11, Z3). (6.5)

This top-dimensional element is characterized by the Poincaré duality theorem4 and is given by the class U 1
3 x7. The

element U r
q is given by (4.4). Adapting to our situation, with p = 3, r = 1, we have the Wu class U 1

3 (Eq. (4.5)).
Therefore, the action of P1

3 on the mod 3 reduction of G7 is given by

P1
3 x7 = ρ3(p1) ∪ x7 = U 1

3 ∪ x7. (6.6)

4 Note that (6.5) is a top class in Z3. Such situations may occur (at least for homology) when the space is not a closed manifold but rather a
manifold with multiple boundary components together with an identification of these components. A standard class of examples is the so-called
Zk - (or Z/k-)manifolds of Sullivan.
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6.3. The degree eight ‘dual’ field Θ

Here we would like to act by cohomology operations on the mod 3 reduction ρ3(Θ) = y8 of the class Θ . Assuming
that the class extends to twelve dimensions, we can consider

P1
3 y8 ∈ H12(Z12, Z3). (6.7)

As in the case for G7 this is equal to U 1
3 y8, so that

P1
3 ρ3(Θ) = ρ3(p1)ρ3(Θ), (6.8)

which is analogous to (6.6).
Next we show that the degree eight class Θ(ρ3(a)) corresponding to the mod 3 reduction can be written as a

cohomology operation. We use (5.4) and the additivity of the mod k reduction, i.e. ρk(a + b) = ρk(a) + ρk(b), to
calculate for G4 reduced mod 3, G4, the following5

1
2

[
1
2

P1
3 G4 + G4 ∪ G4

]
=

1
2

[
1
2

P1
3 (ρ3(a) − ρ3(λ/2)) + (ρ3(a) − ρ3(λ/2)) ∪ (ρ3(a) − ρ3(λ/2))

]
= ρ3(a) ∪ ρ3(a) − ρ3(λ/2) ∪ ρ3(λ/2) + ρ3(a) ∪ ρ3(a)

+ ρ3(λ/2) ∪ ρ3(λ/2) − ρ3(a) ∪ ρ3(λ)

= [2ρ3(a) ∪ ρ3(a) − ρ3(a) ∪ ρ3(λ)]

= Θ (ρ3(a)) , (6.9)

the DFM class with the degree eight term set to zero. The full result will involve the reduction of I8. The division by
two on the left-hand side is harmless since we are reducing modulo 3. This may be thought of as mod 3 analog in
M-theory of the mod 2 expression in type II string theory, namely the Freed–Witten anomaly cancelation formula for
D-branes [26] (Sq3

+ H3∪)F = 0, since the class Θ measures the anomaly of the M-branes [4].

7. The quadratic refinement and Spin K-theory

In this section we will show that the multiplicative structure on the degree four and degree eight cohomology
encodes the quadratic refinement law of [4] for the eight-form in M-theory, the refinement being given by the cup-
product of two four-forms from G4. We will see that this is reflected in the addition on the target (Eq. (7.8)).

The degree eight class in M-theory is given by the integral lift of the (negative of the) right-hand side of the equation
of motion for G4, which is

d ∗ G4 = −
1
2

G4 ∧ G4 + I8, (7.1)

so that the degree eight class Θ(a), defined in [4], is

Θ(a) =

[
1
2

G4 ∧ G4 − I8

]
, (7.2)

whose expression in terms of integral classes a and λ reads

Θ(a) =
1
2

a(a − λ) + 30 Â8. (7.3)

Among the properties of this class proved in [4] is that it is a quadratic refinement of the cup-product of two degree
four classes a1 and a2

Θ(a1 + a2) + Θ(0) = Θ(a1) + Θ(a2) + a1 ∪ a2. (7.4)

5 Here we assume that G4 is in cohomology. This would come from assuming that both factors in the shifted quantization condition [1] to be in
integral cohomology, an so the mod q reduction is in mod q cohomology.
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We would like to look at this from the point of view of the structure on the product of the cohomology groups
H4( ; Z) × H8( ; Z). For this we consider the two classes a and Θ(a) as a pair (a,Θ(a)) in H4( ; Z) × H8( ; Z).
Then the linearity of the addition of the degree four classes a and the quadratic refinement property (7.4) of Θ(a) can
both be written in one expression in the product H4( ; Z) × H8( ; Z), which makes use of the ring structure, namely

(a1,Θ(a1)) + (a2,Θ(a2)) = (a1 + a2,Θ(a1) + Θ(a2) + a1 ∪ a2) . (7.5)

The second entry on the right-hand side is just Θ(a1 + a2) − Θ(0), and so it encodes the property (7.4).
We can define the shifted class Θ0(a) as the difference Θ(a) − Θ(0), so that (7.5) is replaced by(

a1,Θ0(a1)
)

+

(
a2,Θ0(a2)

)
=

(
a1 + a2,Θ0(a1 + a2)

)
, (7.6)

corresponding to the special case

Θ0(a1 + a2) = Θ0(a1) + Θ0(a2) + a1 ∪ a2. (7.7)

This is then just a realization of the multiplication law on H4( ; Z) × H8( ; Z) which, for (a, b) in the product group,
is

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2 + a1 ∪ a2). (7.8)

Note that in order to get this law we had to use the modified eight-class Θ0(a), or alternatively discard Θ(0) = 30 Â8.6

From the quadratic refinement law, [4] noted that this term can at most be 2-torsion.
We now make the connection to Spin K-theory. Similarly to the case of other kinds of bundles, e.g. complex or

real, one can get a Grothendieck group of isomorphism classes of Spin bundles up to equivalence. The reduced K Spin

group of a topological space can be defined as K̃ Spin(X) = [X, BSpin]. For the case of BSpin, we will be interested
in relating Spin K-theory to cohomology of degrees 4 and 8. Such a homomorphism of abelian groups

Q X : K̃ Spin(X) → H4(X; Z) × H8(X; Z) (7.9)

is defined by [10] Q X (Q1(ξ), Q2(ξ)) for ξ ∈ K̃ Spin(X). We see that this is the Spin analog of (1.2). For two bundles

ξ and γ in K̃ Spin(X), and for k ≤ 3,

Qk(ξ ⊕ γ ) =

∑
i+ j=k

Qi (ξ) ∪ Q j (γ ). (7.10)

We also see that the map (7.9) is essentially our ‘gravitational’ Chern character in [5]. The fact that this relation only
works for k ≤ 3 is in accord with the observation that the expressions in [5] also only work for that range.7 The
addition on the target is given precisely by (7.8) for (a, b) ∈ H4(X; Z) × H8(X; Z) [13].

The quantization condition on G4 [1] (see the introduction) involves an integral class coming from the E8 bundle.
How does this E8 part fit into the above discussion? Since H8(E8) = 0, then any degree eight class would have to
come from the only class of lower degree, namely the degree four class. The only possibility is squaring. Indeed, using

Chern–Weil representatives, TrF4
=

1
100 Tr

(
F2
)2

. This implies that that the only degree eight class comes in the form
of a composite, a1 ∪ a2 for a1 and a2, the generators of H4(X, Z) pulled back from H4(B E8, Z).

8. Realizing the anomalies in this approach

Given an action S in Euclidean signature, it often splits into a real and an imaginary parts, S = Re S + iIm S,
so that when forming the semi-classical partition function

∫
M e2π iS one gets a modulus and a phase. The latter is

usually given by the topological (i.e. the metric-independent) parts Stop of the action as Phase = e2π iRe S
= e2π iStop .

6 One way is to set this to zero rationally by requiring p2 to be equal to 7
4 p2

1 , but this does not seem to be the best possible.
7 We thank Michael Hopkins and Isadore Singer for pointing out to us that from a topological point of view, such a structure also only works in

low degrees, interestingly in the range of dimension relevant to M-theory.
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In studying the topological aspects of the partition function in M-theory, and upon including torsion fields, this phase
leads to subtle signs that give potential anomalies. In [2] the condition on the phase ended up being that it is essentially
identically one. That involved the study of the divisibility properties of the fields. Since this lives in Z2, the phase was
just given by the mod 2 reduction of the action, which by Witten’s earlier result [1] is just the sum of the mod 2 index
of the Dirac operator coupled to an E8 bundle and the mod index of the Rarita–Schwinger operator, i.e. the Dirac
operator coupled to the tangent bundle (minus 3 copies of the trivial line bundle). Explicitly [1] [2]

Φ = exp 2π i
[

1
2

Index(DE8) +
1
4

Index(DR.S.)

]
. (8.1)

Using the Atiyah–Patodi–Singer index theorem and using the fact that the mod 2 index of the Dirac operator
coupled to a real bundle in ten dimensions is a topological invariant, the phase was shown by Witten to reduce to
Φ = (−1) f (a), where f (a) is the mod 2 index of the Dirac operator coupled to the E8 vector bundle with a degree
four class a. In [2] this mod 2 index was studied via torsion pairings on cohomology. On X10 and two degree four
classes a, b ∈ H4(X10

; Z), the torsion pairing used is T (a, Sq3b) =
∫

X10 a ∪ Sq2b, where by Adem relation,
β(Sq2b) = Sq3b. In general T takes values in U (1) but in this case it takes values in Z2 ⊂ U (1) since Sq3b is
2-torsion. The mod 2 index f (a) is a quadratic refinement of the bilinear form via the cup-product [2]

f (a1 + a2) = f (a1) + f (a2) +

∫
X10

a1 ∪ Sq2a2. (8.2)

First, note that we have written I8 in terms of the Spin characteristic classes. In particular, the expression (2.6)
for I8 includes Q2, so in order to look at a possible mod 2 reduction of I8 we need to see what the corresponding
reduction of the Qi ’s is. The mod 2 reduction r2 of the Spin classes are the Stiefel–Whitney classes in that dimension,
i.e.

ρ2(Q1) = w4

ρ2(Q2) = w8. (8.3)

However, we see that we have the division by 24 which makes the task nontrivial.8

The presence of the one-loop term in M-theory
∫

Y 11 C3 ∧ I8 reduced in type IIA string theory to the corresponding
one-loop term

∫
X10 B2 ∧ I8. Similarly, the Chern–Simons term 1

6

∫
Y 11 C3 ∧ G4 ∧ G4 reduces to the corresponding

Chern–Simons term in type IIA 1
6

∫
X10 B2 ∧ F4 ∧ F4. The field F4 is obtained from the M-theory field G4 and so is

expected to also have a shift proportional to Q1, the mod 2 reduction of which is w4. Now the mod 2 reduction of
the action amounts to replacing the fields by their mod 2 reductions, together with the mod 2 Steenrod operations,9

so schematically F4 should correspond to w4 and Sq4, I8 to w8, and B2 to Sq2. Now we take B2 to correspond to
a cohomology operation given by the second Steenrod Square Sq2 (that is how it shows up in KO-theory), and so
the operation replacing the one-loop term is

∫
X10 Sq2 I8. By using (2.6) we see that the condition is10 Sq2 Q2 = 0.

Thus from the topological action we get three possible terms in the mod 2 reduction, namely w4Sq2w4, Sq2Sq4w4,
and sq2w8. In what follows we will show that such terms correspond naturally to expressions in Spin K-theory (see
(8.12)). The dimensions relevant here are: four for the M2-brane theory, eight for the M5-brane theory, ten for type II
string theory, and twelve for M-theory (more precisely, the cobounding theory).

8.1. The five-brane and eight-manifolds

The topological part of the M5-brane action extended via the Chern–Simons construction from six dimensions to
eight dimensions is given by [8,9]

S8 =
1
2

∫
M8

G4 ∧ G4 − λ ∧ G4. (8.4)

8 One might be able to evade this subtlety by looking at the integral of the one-loop term (2.4) lifted as usual to a twelve-dimensional bounding

Spin manifold Z12. If we assume that the class of G4 is divisible by 24 then we can write that integral as
∫

Z12
G4
24 ∧ Q2, assuming that G4 is in

cohomology.
9 We could have included w2 with B2, but we are assuming our ten-manifold to be spin.

10 This involves mod 2 reduction implicitly.
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The mod 2 reduction of this action is

ρ2(a) ∪ ρ2(a) − U 1
2 ∪ ρ2(a), (8.5)

where we denote by ρ2(a) the mod 2 reduction of the integral class a of G4, and U 1
2 is the second Wu class11 given

in terms of the Stiefel–Whitney classes by the Wu formula U 1
2 = w4 − w2

2 . For M8 spin, which is what we assume,
then U 1

2 is the same as w4. Similarly, the mod 3 reduction takes the form

ρ3(a) ∪ ρ3(a) − U 1
3 ∪ ρ3(a), (8.6)

where ρ3(a) denotes the mod 3 reduction of the integral class a, and U 1
3 is the first Wu class at the prime p = 3.

Consider the exact sequence [10]

0 −→ kerQ1 −→ K̃ Spin(M8)
Q1

−→ H4(M8
; Z) −→ 0. (8.7)

Since the kernel of Q1 is string manifold, then we see that the difference between this Spin K-theory and integral
four cohomology is the string condition. The Spin K-theory picks degree four classes that are in the image of Q1
modulo the ones in its kernel. Since this looks like cohomology then it makes sense to expect to be able to replace
Q1 by some cohomology operation that would appear in the corresponding Atiyah–Hirzebruch spectral sequence. We
further ask the question: what is the meaning of Q2 once Q1 vanishes, i.e. for String manifolds? The existence of the
exact sequence, which is an isomorphism, [10]

Q2 |
kerQ1

: kerQ1 −→ 3H8(M8
; Z) (8.8)

means that once Q1 is zero, Q2 coincides with three times the eighth integral cohomology of the manifold. Since
in this case Q2 would be just twice the second Pontrjagin class, 2p2, then this implies that p2 is equal to six times
the integral generator. Thus we see that for a String manifold, the second Pontrjagin class is divisible by six. This is
obviously consistent with the divisibility by two in the proposal in [5].

8.2. The mod 2 anomaly

The discussion leading to the mod 2 reduction of the action involved only the E8 classes and did not include
the gravitational class λ/2 appearing in the shifted quantization condition for the M-theory four-form (1.1). In
particular, they involved the Wu relations among the Chern classes of the unitary bundle obtained from the breaking
E8 ⊃ (SU (5) × SU (5)) /Z5 [2]. In our present context of Spin characteristic classes, we would like to give the
corresponding condition on these classes. Since λ/2 appears linearly with a, the Spin classes will have an analogous
expression12 Q1 ∪ Sq2 Q1. We would like to investigate whether this can be obtained in a systematic way as part of an
expression in KSpin which would also have a topological interpretation. In a given dimension, there are relations
between the characteristic classes and the cohomology operations. In this case, the relations in H10(BSO; Z2)

are given as linear combinations of the possible Steenrod square operations acting on the generators (8.3), namely
w2

2 ∪ Sq2w2
2 , Sq4Sq2w2

2 , and Sq2w2
4 . In the spin case, only the latter survives.

We are dealing with degree four and degree eight classes so we can pull back the above classes to the classifying
spaces K (Z, 4) and K (Z, 8), since cohomology groups of X can be understood as the homotopy classes of maps from
that space to the Eilenberg–Maclane spaces

H4(X, Z) × H8(X, Z) = [X, K (Z, 4)] × [X, K (Z, 8)]

= [X, K (Z, 4) × K (Z, 8)]. (8.9)

Let x ∈ H4(K (Z, 4), Z) and y ∈ H8(K (Z, 8), Z) be the standard generators. We are further interested in classes in
Z2, so let the corresponding mod 2 reductions be given by

z4 = x mod 2 ∈ H4(K (Z, 4), Z2)

z8 = y mod 2 ∈ H8(K (Z, 8), Z2). (8.10)

11 In this general notation, U1
2 corresponds to v1 or ν1 in the notation more particular to the prime 2.

12 Again the mod 2 reduction is understood implicitly.
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In the Postnikov tower with lowest level E0, H10(E0; Z2) as a vector space over Z2 has a basis z4 ∪ Sq2z4, Sq4Sq2z4,
and Sq8z8. It turns out that the coefficients in the linear combination are one so that the second k-invariant is given
by [10] k2 = z4 ∪ Sq2z4 + Sq4Sq2z4 + Sq8z8, and the corresponding map

ΛX : H4(X; Z) × H8(X; Z) → H10(X; Z2), (8.11)

is given by [10]

ΛX (Q1, Q2) = Q1 ∪ Sq2 Q1 + Sq4Sq2 Q1 + Sq2 Q2. (8.12)

We view this map as the mod 2 index for Dirac operators coupled to Spin bundles, and the vanishing of the mod index
is then essentially13 the condition to lift the degree four (and eight) cohomology to Spin K-theory.

8.3. The DFM anomaly

In this section we look at the DFM anomaly [4]. We aim at achieving two things: First, encode the structure of the
degree four and degree eight classes in our context of Spin characteristic classes, and second, seek a possible variant
of this anomaly to include mod 3 reductions of fields. The first was considered in Section 6.3, so here we consider the
second.

In order to describe the electric charge induced by the self-interactions of the C-field, Ref. [4] defined an integral
lift of the EOM of G4, ΘX (a), where a is the integral class appearing in the shifted quantization condition of G4 (1.1).
We note that the quadratic refinement is exactly the addition law on the target of the map Q X in (7.8). Thus we see
that the product of the two cohomology groups H4 and H8 together with their ring structure encodes the elements a
and ΘX (a) together with the correct addition laws. Now that we have seen that we have the correct structure for the
elements and their addition law, we would like to see what consequence that has on the anomaly itself.

Let us first motivate the problem heuristically from the point of view of ten-dimensional type IIA. There, the
Freed–Witten anomaly reads [26] Sq3 F + H3 ∪ F = 0, where F is the total Ramond–Ramond field strength that
includes the fields of all even degrees. Since the ‘operator’ Sq3

+ H3∪ appearing in this equation is of a uniform
degree, we can isolate one of the RR fields. We thus focus on F4, in which case Sq3 F4 + H3 ∪ F4 = 0. We use this
expression to get hints about what a possible ‘S1-lift’ might be in M-theory. Since the diagonal lift of H3 as well as
the vertical lift of F4 to M-theory both give G4, a candidate expression in M-theory would involve replacing F4 and
H3 both with G4, i.e. schematically

OG4 + G4 ∪ G4, (8.13)

where O is a cohomology operation, we have been arguing for its existence and which need to be determined. Again,
in order to get an equation of homogeneous degree – that is the only choice that seems to be available – the operation
O should be of degree four, i.e. it should raise the cohomology degree by four. What are the candidates? It seems to
be only Sq4 (and decomposables) at p = 2 or P1

3 at p = 3.
We would like to understand the cohomology groups H4i (X, Z) for i = 1, 2 in order to understand the map from

Spin K-theory and the corresponding obstructions to lifting. We follow [10], for the mathematical results, for what
follows. Given the universal Spin characteristic classes Qi ∈ H4i (BSpin; Z) =

[
BSpin, K (Z, 4i)

]
, we can pull them

back to the space X . To understand the image of Q X we ask which map f : X −→ K (Z, 4) × K (Z, 8) admits a
lifting relative to the pair Q = (Q1, Q2),

BSpin
∆

−→ BSpin × BSpin
Q1×Q2
−→ K (Z, 4) × K (Z, 8). (8.14)

It is here that the Steenrod power operations P1
3 , taking H4(K (Z, 4); Z3) to H8(K (Z, 4); Z3), make their appearance

as follows. Let x4 and y8 be the standard generators of H4(K (Z, 4); Z) and H8(K (Z, 8); Z), respectively. Then
as vector spaces over Z3, H8(K (Z, 8); Z3) is generated by a single element y8 mod 3, while H8(K (Z, 4); Z3) is

13 Note that there are factors of half involved.



H. Sati / Journal of Geometry and Physics 58 (2008) 387–401 399

generated by the two elements

x2
4 mod 3 (decomposable)

P1(x4 mod 3) (primitive) (8.15)

The invariant k1 is a cohomology class that lies in

H8(K (Z, 4) × K (Z, 8); Z3) = H8(K (Z, 4); Z3) ⊕ H8(K (Z, 8); Z3), (8.16)

and so its expression is given as a linear combination of the above three Z3-valued generators. It turns out again that
the coefficients are all one so that the map

RX : H4(X; Z) × H8(X; Z) → H8(X; Z3) (8.17)

given by

RX (a, b) = (a ∪ a + b) mod 3 + P1
3 (a mod 3), (8.18)

is a homomorphism, with the group structure being that on H4(X; Z) × H8(X; Z).14

The lifting condition in dimension eight is the following [10]. The stable classes of Spin bundles over an eight-
dimensional closed manifold are in one-to-one correspondence with pairs (a, b) ∈ H4(X; Z) × H8(X; Z) satisfying

(a ∪ a + b) mod 3 + U 1
3 ∪ (a mod 3) = 0, (8.19)

where U 1
3 is the corresponding Wu class. It is this formula that we think of as the mod 3 analog of the DFM formula.

9. Further remarks

The integral anomaly: For a torsion class c, f (a+2c) = f (a)+
∫

c∪Sq2λ [2]. The absence of the refinement implies
that in the torsion pairing between a 4-class and a seven-class that βSq2λ be equal to zero. This is T (b, Sq3λ) = 0
giving the W7 anomaly canceled in [3] via elliptic cohomology. The cohomology ring of BSpin over the integers
contains, in addition to the Spin characteristic classes Q1 and Q2 of dimensions 4 and 8 respectively, a characteristic
class of degree seven. This is the generator of

H7(BSpin; Z) = Z2, (9.1)

which is nothing but the Seventh integral Stiefel–Whitney class W7, obtained as the Bockstein on the sixth mod 2
Stiefel–Whitney class w6. This is precisely the anomaly that DMW found [2]. It was canceled in [3] by declaring the
spacetime to be orientable with respect to Landweber’s elliptic cohomology E(2) or Morava K-theory K (2) (both
taken at the prime p = 2), a result which was obtained by identifying W7 as the cohomology class corresponding
to an obstruction, i.e. as a differential in the Atiyah–Hirzebruch spectral sequence. From (9.1) it seems that there is
another interpretation, namely that the vanishing of W7 is simply the vanishing of the seventh Spin characteristic class
pulled back to spacetime from the universal bundle BSpin. Thus, the DMW anomaly can also be naturally interpreted
in this context.

The w4 anomaly: This anomaly was physically proposed and mathematically derived in [3]. This also shows up in an
apparently different context, namely as part of the shift in the quantization of the M-theory field strength [1]. We make
a connection between the two. We start with the following observation. If w4 = 0 then the first Spin characteristic
class is divisible by two. Since Q1 ≡ w4 mod 2, then w4 = 0 implies that Q1 ≡ 0 mod 2, which implies that Q1 is
divisible by two. So there is some (not necessarily unique) class γ such that 2γ = Q1. This gives an interpretation
of the E O(2) condition as giving the shift in Witten’s quantization (1.1) to be even. In this case, the membrane path
integral can be defined with no ambiguity. Thus, the w4 condition, when traced back, can be viewed as the condition
for an anomaly free membrane partition function. In [3] this was needed to construct the mod 2 part of the generalized

14 In going from k1 to RX we replaced x4 by a and y8 by b.
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cohomology partition function. Thus, we interpret the construction in [3] as corresponding to the case when the M-
theory field strength satisfied a direct quantization condition, i.e. one that is not shifted. Note that W7 is obtained
from w4 via the Steenrod operation Sq3. By the Wu formula w6 = Sq2w4 + w2w4, so that for spin bundles one has
W7 = βSq2w4 = Sq3w4, where β is the Bockstein map.

Mod 4 reduction: The inclusion i : Z2 → Z4 induces the mapping i∗ : H∗(X; Z2) → H∗(X; Z4). For a vector
bundle ξ , the reduction mod 4 of the Pontrjagin classes pi (ξ) can be written in terms of the Stiefel–Whitney classes
wi (ξ) (of various degrees) by using i∗ above and the Pontjagin square P . The latter is a cohomology operation from
H2k(X; Z2) into H4k(X; Z4). The mod 4 reduction of the Pontrjagin classes is

ρ4 p1(ξ) = Pw2(ξ) + i∗w4(ξ),

ρ4 p2(ξ) = Pw4(ξ) + i∗{w8(ξ) + w2(ξ)w6(ξ)}. (9.2)

Thus the mod 4 reductions are given essentially by the mod 2 reductions. Note that for a Spin bundle, w2(ξ) is zero,
and requiring further the E O(2) orientation condition w4 = 0 [3,21] then implies that the mod 4 reduction of p1 is
zero. This would also be true for p2 if in addition we require w8 to be zero, i.e. that the second Spin characteristic
class Q2 used earlier is even.

Mod 5 reduction: From the definition of the Steenrod reduced powers we see that the operation P1
5 cubes a degree

four class. Thus, on the mod 5 reduction ρ5(G4) we have P1
5 (ρ5(G4)) = ρ5(G4)∪ρ5(G4)∪ρ5(G4), thus generating

the form of the cubic Chern–Simons term. What about the reduction of I8 mod 5? If we assume for simplicity that
p1/2 = 0, then I8 reduces to p2/48, the mod 5 reduction of which we write as p2/2 mod 120. The Pontrjagin classes
mod 120 are topological invariant [15]. If we use Spin bundles and their higher connected analogs then the right
classes to look at are the Spin characteristic classes formed of p1/2 and p2/2. We expect that using these classes we
get the topological invariance of I8 reduced modulo 5.

Type II and the AHSS: In type IIA string theory it was argued in [25] that a D-brane which is free of Freed–Witten
anomalies lifts to twisted K-theory if and only if the Poincaré dual of the cycle that it wraps is annihilated by the
Milnor primitive Q1 = −β P1

3 . This operator is indeed the fifth differential d5 in the Atiyah–Hirzebruch Spectral
Sequence for complex K-theory at q = 3. Mathematically, this follows from [27] where the differentials at prime
q ≥ 2 are given by d2r(q−1)+1 = β Pr

q . For q = 3 we see that the first differential is just the Bockstein β and the
third is d9 = β P2

3 . This shows that the only nontrivial operation at q = 3 in string theory is β P1
3 considered in [25].

In the light of this discussion, there does not seem to be anything special about q = 3 in the considerations in [25]
except providing examples and staying within the allowed range of dimension. This suggests that q = 5 examples
should be relevant in type II but they have to be restricted to degree one classes, as seen by the fact that P1

5 raises the
cohomology degree by eight.

In our current M-theory context, the formula (6.9) suggests an obstruction in a spectral sequence for which we
argued earlier. The differential has order four. Even differentials are usually associated with real (rather than complex)
theories – for example, whereas the first differential for K-theory is d3 = βSq2, for KO-theory it is d2 = Sq2, and
this generalizes to other theories as well – and so this is compatible with the requirement that the theory be real.

In closing we point out that a further study of denominator factors is needed. This may require going beyond
K Spin. We expect, in line of previous work, that accounting for factors such as 24 will make contact with higher
BO〈n〉. This will be the subject of the next step in our investigation.
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